Study of the acetylation pattern of Chitosan by pure shift NMR

Juan M. Lopez,* Luis F. Sánchez, Javier Nakamatsu, Helena Maruenda*

Pontificia Universidad Católica del Perú, Departamento de Ciencias - Química, CERMN, Av. Universitaria 1801, Lima, 32, Perú.

SUPPORTING DATA

EXPERIMENTAL SECTION

Reagents

Commercial chitin (C9213, batch #061M0110V), obtained from shrimp shells (*Pandalus borealis*) from Iceland, was purchased from Sigma Aldrich (St. Louis, Missouri, USA). Deuterium oxide (99.98%), DCl (30%), and NaOH pellets were obtained from Merck KGaA (Darmstadt, Germany). The water used was MilliQ purified (Millipore, Billerica, MA, USA). All reagents used were of analytical grade.

Sample preparation:

Chitosan samples (Chi1 – Chi20) with different degrees of acetylation (F_A from 0.001 to 0.419) were prepared by alkaline deacetylation of chitin as follow:

Chi-1 – Chi-11: 3 g of chitin were suspended in 90 mL 50% (w/w) NaOH solution and heated to 90°C with stirring at 300 rpm. A portion of the reaction mixture was removed for analysis after 9 min (Chi-1), 10 min (Chi-2), 15 min (Chi-3), 20 min (Chi-4), 25 min (Chi-5), 30 min (Chi-6), 35 min (Chi-7), 40 min (Chi-8), 60 min (Chi-9), 150 min (Chi-10), and 300 min (Chi-11). Chi-12 sample was prepared under the same conditions, removed after 9 min.

Chi-13 – Chi-20: To 3 g of chitin, placed in a round bottom flask and left under vacuum for 24 h, 90 mL of a 50 % NaOH aqueous solution were added. The mixture was then heated to 120°C with stirring at 300 rpm under nitrogen atmosphere. A portion of the reaction mixture was removed for analysis after 7 min (Chi-13), 25 min (Chi-14), 35 min (Chi-15), 40 min (Chi-16), 55 min (Chi-17), 100 min (Chi-18), 145 min (Chi-19), and 175 min (Chi-20).

The material removed in all cases was immediately washed with MilliQ water to pH 7, dried at 50° C for 3 days, and kept in a closed low humidity chamber (11% RH) until analysis. The NMR samples were prepared by re-dissolving 10 mg of the recovered dried solid in 0.82 mL of a 0.3% (v/v) DCl/D₂O.

NMR acquisition parameters

¹H-SAPPHIRE-PSYCHE experiments were acquired in a pseudo 3D manner with 16 transients, 2 K complex data points, 5 KHz spectral width, 8 SAPPHIRE interferogram in F2, and 32 Pure Shift interferogram with 39.063 Hz spectral width in F1. Total experimental time, 4 h 55 min.

¹H-¹H-PSYCHE-TOCSY experiment was acquired with 8 transients, 2 K * 64 complex data points, 5 kHz * 4 kHz spectral width in F2 and F1 respectively, 16 Pure Shift interferogram with 64 points per block in F3, and 80 ms TOCSY mixing time. Total experimental time, 12 h 52 min. Adiabatic excitation of ¹H-SAPPHIRE-PSYCHE and ¹H-¹H-PSYCHE-TOCSY was performed with a 20° flip angle double saltire CHIRP pulse, 30 ms duration, 10 KHz sweep-width combined with a weak field gradient of 1.08 Gauss/cm.

Pure shift 2D ${}^{1}\text{H}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{11}\text{F1}{}^{13}\text{C}{}^{1}\text{HOBS}{}^{11}\text{H}{}^{12}\text{C}{}^{11}\text{HOBS}{}^{11}\text{H}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{11}\text{C}{}^{11}\text{HOBS}{}^{11}\text{HS}{}^{$

Pure shift ¹H-¹³C-PS-HSQC was acquired with 16 transients, 2 K * 256 complex points, 5 kHz * 20 kHz spectral width in F2 and F1 respectively. Homonuclear decoupling was performed in real-time acquisition manner using BIRD scheme. Total experimental time, 11 h 47 min.

Figure S1. H1_D and H2_D region of ¹H-¹H-PSYCHE-TOCSY spectrum (sample Chi-1). The correlation between H1_{DDA} resonance (5.26 ppm) and H2_D resonance (small signal at 3.54 ppm) shows that it is related to DDA triads.

Figure S2. Modified interferogram ¹H-HOBS pulse sequence used to measure relaxation during the selective pulse. Filled and empty rectangles indicate 90° and 180° pulses, respectively. Semiellipses indicate a 180° selective pulse. Pulses inside the brackets are repeated n times. Pulsed field gradients G₁, G₂, and G₃ are applied along the z-axis (G_z). The G₁, G₂, and G₃ relative strength ratio were set according to G₃ = G₁-G₂. Phase cycling: $\delta = x, x, -x, -x; \phi = x, y, x, y;$ ϕ rec = x, -x, -x, x. Interferogram acquisition was achieved by acquiring part of the FID with duration 1/SW for each t1 increment.

Figure S3. Relaxation during the selective pulse measured in sample Chi-3 using the pulse sequence described in Supporting Figure 2. The data was fitted according to $\mathbf{I} = \mathbf{I}_0 * \mathbf{Exp}(-\mathbf{R}_{\text{Rsnob}} * (\mathbf{2n} + \mathbf{1}))$, where 2n+1 = total number of selective pulses. Relaxation values ($\mathbf{R}_{\text{Rsnob}}$) were obtained for H1_{AD} (0.1741), H1_{AA} (0.1184), H2_{DD} (0.0855), and H2_{DA} (0.0924).

Figure S4. Error induced by the relaxation on the diads frequencies values. Experiments were recorded in interferogram manner with 8 transients, 6 kHz spectral width, and 32 Pure Shift interferograms with 64 complex point per block and a total relaxation time of 10.34 s. Selective inversion was achieved by a 20 ms Rsnob composite pulse. We performed two ¹H-HOBS experiments with different carrier position: 4.98 ppm for H1_A and 3.59 ppm for H2_D. The relaxation corrected diads frequencies values were calculated using the following formulas.

¹H-HOBS experiment with 4.98 ppm carrier position:

$$\mathbf{F}_{AD} = (\mathbf{F}_{A} * \mathbf{I}_{1AD} * \mathbf{C}_{1AD}) / (\mathbf{I}_{1AD} * \mathbf{C}_{1AD} + \mathbf{I}_{1AA} * \mathbf{C}_{1AA})$$

$$\mathbf{F}_{AA} = (\mathbf{F}_A * \mathbf{I}_{1AA} * \mathbf{C}_{1AA}) / (\mathbf{I}_{1AD} * \mathbf{C}_{1AD} + \mathbf{I}_{1AA} * \mathbf{C}_{1AA})$$

¹H-HOBS experiment with 3.59 ppm carrier position:

$$F_{DA} = ((1 - F_A) * I_{2DA} * C_{2DA}) / (I_{2DD} * C_{2DD} + I_{2DA} * C_{2DA})$$
$$F_{DD} = ((1 - F_A) * I_{2DD} * C_{2DD}) / (I_{2DD} * C_{2DD} + I_{2DA} * C_{2DA})$$

Spectra deconvolution were performed using Topspin software. Correction factors C were calculated by: $\mathbf{C} = e^{-\mathbf{R}_{Rsnob}}$. The figure shows a strong dependency between the error and the F_A values. The error in all cases was less than 1%.

Figure S5. ¹H-NMR, ¹H-iHOBS and ¹³C-NMR spectra sensitivity comparison acquired on Chi-12 sample. ¹H-NMR on 12.2 mg/mL sample: H1_D (top left) and H1_A (bottom left); 1H-iHOBS on 12.2 mg/mL sample: H1_D (top middle left) and H1_A (bottom middle left); 1H-iHOBS on 0.45 mg/mL sample: H1_D (top middle right) and H1_A (bottom middle right) and ¹³C-NMR on 12.2 mg/mL sample: C5 (top right). ¹H-NMR and ¹H-iHOBS experiments were acquired with 90° flip angle excitation, 8 scans, total relaxation time of 10.34 s and 32 increments for iHOBS. ¹³C-NMR spectra was acquired using 30° flip angle, 16384 scans, 1.1 s acquisition time, and relaxation delay of 2 s.

Figure S6. Showing ¹H-¹³C-SAPS-HSQC (left) plus H5-C5 (top middle), deacetylated H2-C2 (top right), acetylated H1-C1 (bottom middle) and deacetylated H1-C1 (bottom right) expansions.

The indirect dimension enhanced resolution (11.8Hz) results in an excellent separation of deacetylated H1-C1triads (bottom right). Likewise, a signal splitting belonging to deacetylated H2-C2 (top right), acetylated H1-C1 (bottom middle) diads is now observed. This separation is not observed in the regular ¹H-¹³C PS-HSQC, nevertheless those better resolved signals could not be assigned to any specific triad or tetrad.

SUPPORTING TABLES

	Conc (mg/mL)	S/N _{DD}	S/N _{DA}	S/N _{AD}	S/N _{AA}	$\mathbf{F}_{\mathbf{D}\mathbf{D}}$	FDA	F _{AD}	FAA	P _A
¹³ C-NMR	12.2	14.9	8.6	7.2	3.1	0.376	0.235	0.257	0.131	1.05
¹ H-iHOBS	12.2	759.0	611.4	394.1	267.2	0.349	0.232	0.241	0.178	0.975
	0.45	31.7	23.0	13.8	8.9	0.356	0.224	0.236	0.183	0.950
¹ H-NMR	12.2	427.0		21	4.8					

Table S1. Signal to Noise (S/N) and diads frequencies measured from supporting figure 5 spectra.

Table S2. Fraction of acetylation (F_A), diads frequencies and pattern of acetylation (P_A) of twenty chitosan samples (Chi-1-Chi-20) determined by standard ¹H-NMR, ¹H-iHOBS, and ¹³C-NMR methodologies.

	${}^{1}\mathbf{H}^{b}$	¹³ C ^c	${}^{1}\mathrm{H}^{\mathrm{d}}$					13	${}^{1}\mathbf{H}^{d}$	¹³ C ^c		
	FA	FA	Fdd	Fda	Fad	Faa	Fdd	Fda	Fad	FAA	$\mathbf{P}_{\mathbf{A}}$	$\mathbf{P}_{\mathbf{A}}$
Ch: 12	0.410	0.382	0.349	0.232	0.241	0.178	0.376	0.235	0.257	0.131	0.975	1.05
Cni-12	0.419	0.369	0.350	0.234	0.239	0.177	0.429	0.202	0.227	0.142	0.975	0.935
Chi-1	0.366	0.382	0.376	0.258	0.200	0.166	0.377	0.241	0.209	0.173	0.958	0.939
		0.355	0.376	0.258	0.191	0.175	0.409	0.236	0.211	0.144	0.935	0.962
Chi-2	0.343	0.359	0.408	0.249	0.208	0.135	0.426	0.215	0.201	0.158	0.988	0.896
		0.344	0.395	0.262	0.204	0.139	0.417	0.239	0.196	0.149	0.998	0.936
Chi-13	0.338	0.367	0.451	0.211	0.191	0.148	0.430	0.203	0.208	0.159	0.884	0.887
		0.321	0.445	0.217	0.185	0.153	0.528	0.152	0.160	0.160	0.879	0.721
Ch: 2	0 334	0.320	0.431	0.234	0.194	0.141	0.458	0.222	0.200	0.121	0.935	0.950
CIII-5	0.554	0.352	0.432	0.234	0.186	0.149	0.459	0.190	0.231	0.121	0.913	0.950
Chi-4	0.309	0.263	0.464	0.227	0.177	0.132	0.537	0.201	0.144	0.119	0.909	0.834
CIII-4	0.507	0.281	0.459	0.233	0.174	0.134	0.503	0.216	0.159	0.122	0.910	0.877
Chi-5	0.282	0.313	0.503	0.215	0.167	0.115	0.490	0.197	0.185	0.128	0.900	0.880
CIII-5	0.202	0.337	0.493	0.225	0.168	0.115	0.512	0.151	0.184	0.153	0.916	0.769
Chi 6	0 276	0.308	0.522	0.203	0.160	0.115	0.484	0.208	0.192	0.116	0.870	0.926
CIII-0	0.270	0.292	0.517	0.207	0.158	0.118	0.516	0.192	0.161	0.131	0.868	0.828
Chi-7	0.265	0.322	0.539	0.196	0.160	0.105	0.514	0.164	0.179	0.143	0.877	0.796
CIII-7		0.243	0.526	0.209	0.152	0.113	0.576	0.181	0.144	0.099	0.871	0.842
Chi-8	0.257	0.258	0.547	0.196	0.154	0.103	0.575	0.167	0.135	0.123	0.870	0.758
CIII-0		0.242	0.531	0.212	0.154	0.103	0.561	0.197	0.130	0.111	0.897	0.822
Chi-9	0.168	0.162	0.685	0.147	0.115	0.053	0.672	0.165	0.116	0.046	0.871	0.925
CIII-9		0.131	0.654	0.177	0.121	0.048	0.718	0.151	0.087	0.044	0.944	0.872
Chi-14	0.146	0.109	0.727	0.127	0.100	0.046	0.793	0.099	0.099	0.010	0.849	1.017
CIII-14		0.145	0.697	0.158	0.103	0.043	0.716	0.139	0.145	0.000	0.910	1.165
Chi-15	0.132	0.173	0.754	0.115	0.089	0.043	0.729	0.098	0.133	0.040	0.821	0.879
	0.152	0.202	0.730	0.138	0.093	0.039	0.677	0.120	0.168	0.035	0.884	0.981
Chi-16	0.115	0.178	0.774	0.111	0.077	0.038	0.715	0.107	0.104	0.075	0.817	0.714
		0.247	0.751	0.133	0.080	0.035	0.640	0.112	0.091	0.156	0.876	0.530
Chi-17	0.103	0.115	0.815	0.082	0.074	0.029	0.783	0.102	0.095	0.020	0.816	0.943
0		0.130	0.800	0.097	0.075	0.028	0.736	0.133	0.070	0.060	0.851	0.751
Chi-18	0.078	0.050	0.853	0.069	0.054	0.024	0.918	0.032	0.034	0.015	0.787	0.718
		0.109	0.837	0.085	0.054	0.023	0.791	0.101	0.078	0.031	0.826	0.845
Chi-19	0.067	0.082	0.876	0.058	0.050	0.016	0.882	0.036	0.074	0.007	0.824	0.941
		0.135	0.846	0.087	0.051	0.016	0.783	0.082	0.080	0.055	0.887	0.689
Chi-20	0.062	0.123	0.895	0.043	0.046	0.010	0.792	0.085	0.096	0.027	0.785	0.8/5
		0.070	0.865	0.073	0.045	0.017	0.875	0.055	0.045	0.025	0.837	0.717
Chi-10	0.046	0.000	0.924	0.030	0.040	0.006	0.999	0.001	0.000	0.000	0.890	0.554
		nd ^c	0.856	0.099	0.034	0.011	nd ²	nd ^v	nd ^v	nd ^v	0.930	nd ^v
Chi-11	0.001	0.000	0.998	0.000	0.001	0.000	1.000	0.000	0.000	0.000	1.001	1.000
		nač	0.999	0.000	0.001	0.000	na	na	na	na	1.001	nač

^a Chi sample data was deconvoluted using Topspin software (first row on each) and Mestrenova (second row on each). ^b F_A values were calculated using classical ¹H-NMR spectra.^{14,15} ^c Inverse gate ¹³C-NMR spectra¹⁰ were used for F_A and P_A determinations. ^d ¹HOBS methodology implemented in this study was used to calculate diads fractions and P_A values. ^e nd cannot be determined.

Table S3. Fraction of acetylation and diads frequencies of chitosan samples (Chi3, Chi-9, Chi-12 and Chi-15) determined by ¹H-NMR, ¹H-¹³C-SAPS-HSQC, ¹H-iHOBS, and ¹³C-NMR methodologies.

	¹ H	SAPS-HSQC			¹ H-iHOBS				¹³ C				
	FA	Fdd	Fda	Fad	Faa	Fdd	Fda	Fad	FAA	Fdd	Fda	Fad	Faa
Chi-12	0.419	0.385 ^a	0.211ª	0.261 ^a	0.143 ^a	0.349	0.232	0.241	0.178	0.376	0.235	0.257	0.131
Chi-3	0 334	0.526ª	0.219 0.172ª	0.245 0.216 ^a	0.086ª	0.431	0.234	0.194	0.141	0.458	0.222	0.200	0.121
	0.001	0.493 ^b	0.246 ^b	0.188 ^b	0.073 ^b								
Chi-9	0.168	0.717ª 0.676 ^b	0.112 ^a 0.132 ^b	0.107 ^a 0.122 ^b	0.064ª 0.070 ^b	0.685	0.147	0.115	0.053	0.672	0.165	0.116	0.046
Chi-15	0.132	0.796ª	0.071ª	0.081ª	0.030ª	0.754	0.115	0.089	0.043	0.729	0.098	0.133	0.040
		0.770 ^b	0.099 ^b	0.079 ^b	0.052 ^b								

¹H-¹³C-SAPS-HSQC quantification is obtained by direct integration of the signal H5-C5 or by combining integrations from acetylated H1-C1 and deacetylated H2-C2 signals.

^aDiads frequencies determined ¹H-¹³C-SAPS-HSQC by integrating H5-C5 signals:

$$\begin{aligned} F_{DA} &= I_{5DA} / (I_{5DA} + I_{5AD} + I_{5DD} + I_{5AA}) \\ F_{AD} &= I_{5AD} / (I_{5DA} + I_{5AD} + I_{5DD} + I_{5AA}) \\ F_{DD} &= I_{5DD} / (I_{5DA} + I_{5AD} + I_{5DD} + I_{5AA}) \\ F_{AA} &= I_{5AA} / (I_{5DA} + I_{5AD} + I_{5DD} + I_{5AA}) \end{aligned}$$

^bDiads frequencies determined ¹H-¹³C-SAPS-HSQC by integrating deacetylated H2-C2 and acetylated H1-C1 signals:

$$\begin{split} F_{DA} &= \left((1 - F_A) * I_{2DA} \right) / \left(I_{2DD} + I_{2DA} \right) \\ F_{DD} &= \left((1 - F_A) * I_{2DD} \right) / \left(I_{2DD} + I_{2DA} \right) \\ F_{AD} &= \left(F_A * I_{1AD} \right) / \left(I_{1AD} + I_{1AA} \right) \\ F_{AA} &= \left(F_A * I_{1AA} \right) / \left(I_{1AD} + I_{1AA} \right) \end{split}$$

;Selective pulse Relaxation reset_HOBS_1d-R

;avance-version (14/08/29) ;pseudo 2D sequence ;band selective homodecoupling using a HOBS element ; ; ; \$CLASS=HighRes ;\$DIM=2D ;\$TYPE= ;\$SUBTYPE= ;\$COMMENT=

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

"d11=30m"

"d12=20u"

"in0=dw*l31"

"d0=3u"

"p2=2*p1"

"DELTA2=131*2*dw"

"DELTA3=p16+d16+d0*2+de+dw*2*130+5u"

"129=2*131*td1"

1 ze

2 d11

3 d12

d1 pl1:f1

50u UNBLKGRAD

(p1 ph3):f1

d0

p16:gp1*0.5 d16

(p2 ph5):f1

p16:gp1*-0.5

d16

DELTA3

(p47:sp34 ph2):fl

4 (p47:sp34 ph12):f1

(p47:sp34 ph2):f1

lo to 4 times 111

```
5u
p16:gp1*-1.0
d16
d0
```

4u BLKGRAD

go=2 ph31

d11 mc #0 to 2

F1QF(caldel(d0, +in0))

DELTA2

exit

ph2=0 1 ph3=0 0 2 2 ph4=0 ph5=0 ph12=2 3 ph31=0 2 2 0

;pl1 : f1 channel - power level for pulse (default)

;sp30: f1 channel - shaped pulse 180 degree (Bip720,50,20.1)

;sp34: f1 channel - shaped pulse 180 degree for Zangger-Sterk element

;p1 : f1 channel - 90 degree high power pulse

;p16: homospoil/gradient pulse

;p44: fl channel - 180 degree shaped pulse for refocussing

;d0 : incremented delay (2D)	[3 usec]								
;d1 : relaxation delay; 1-5 * T1									
;d11: delay for disk I/O	[30 msec]								
;d12: delay for power switching	[20 usec]								
;d16: delay for homospoil/gradient recovery									
;111: n 180 degree shaped pulse									
;129: total number of points in reconstructed FID									
;130: number of complex points at the beginn	ing not to be included								
; in reconstruction									
;131: number of complex points along the acquisition dimension per block									
; block length about 8 to 10ms									
$\sin 0 = dw + 131$									
;ns: 1 * n, total number of scans: NS * TD0									
;ds: 4									
;FnMODE: QF									

;for z-only gradients:

;gpz0: 2%

;gpz1: 19%

;use gradient files:

;gpnam0: RECT.1

;gpnam1: SMSQ10.100

;use AU-program proc_reset to process data