Study of the acetylation pattern of Chitosan by pure shift NMR

Juan M. Lopez,* Luis F. Sánchez, Javier Nakamatsu, Helena Maruenda*
Pontificia Universidad Católica del Perú, Departamento de Ciencias - Química, CERMN, Av. Universitaria 1801, Lima, 32, Perú.

SUPPORTING DATA

EXPERIMENTAL SECTION

Reagents

Commercial chitin (C9213, batch \#061M0110V), obtained from shrimp shells (Pandalus borealis) from Iceland, was purchased from Sigma Aldrich (St. Louis, Missouri, USA). Deuterium oxide (99.98\%), $\mathrm{DCl}(30 \%)$, and NaOH pellets were obtained from Merck KGaA (Darmstadt, Germany). The water used was MilliQ purified (Millipore, Billerica, MA, USA). All reagents used were of analytical grade.

Sample preparation:

Chitosan samples (Chi1 - Chi20) with different degrees of acetylation (F_{A} from 0.001 to 0.419) were prepared by alkaline deacetylation of chitin as follow:
Chi-1 - Chi-11: 3 g of chitin were suspended in $90 \mathrm{~mL} 50 \%$ (w / w) NaOH solution and heated to $90^{\circ} \mathrm{C}$ with stirring at 300 rpm . A portion of the reaction mixture was removed for analysis after $9 \mathrm{~min}(\mathrm{Chi}-1), 10 \mathrm{~min}(\mathrm{Chi}-2), 15 \mathrm{~min}$ (Chi-3), 20 min (Chi-4), 25 min (Chi-5), 30 min (Chi-6), 35 min (Chi-7), 40 min (Chi-8), 60 min (Chi-9), 150 min (Chi-10), and 300 min (Chi-11). Chi12 sample was prepared under the same conditions, removed after 9 min .
Chi-13 - Chi-20: To 3 g of chitin, placed in a round bottom flask and left under vacuum for 24 $\mathrm{h}, 90 \mathrm{~mL}$ of a $50 \% \mathrm{NaOH}$ aqueous solution were added. The mixture was then heated to $120^{\circ} \mathrm{C}$ with stirring at 300 rpm under nitrogen atmosphere. A portion of the reaction mixture was removed for analysis after 7 min (Chi-13), 25 min (Chi-14), 35 min (Chi-15), 40 min (Chi-16), 55 min (Chi-17), 100 min (Chi-18), 145 min (Chi-19), and 175 min (Chi-20).

The material removed in all cases was immediately washed with MilliQ water to pH 7 , dried at $50^{\circ} \mathrm{C}$ for 3 days, and kept in a closed low humidity chamber ($11 \% \mathrm{RH}$) until analysis. The NMR samples were prepared by re-dissolving 10 mg of the recovered dried solid in 0.82 mL of a 0.3% (v/v) $\mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$.

NMR acquisition parameters

${ }^{1}$ H-SAPPHIRE-PSYCHE experiments were acquired in a pseudo 3D manner with 16 transients, 2 K complex data points, 5 KHz spectral width, 8 SAPPHIRE interferogram in F2, and 32 Pure Shift interferogram with 39.063 Hz spectral width in F1. Total experimental time, 4 h 55 min .
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-PSYCHE-TOCSY experiment was acquired with 8 transients, $2 \mathrm{~K} * 64$ complex data points, $5 \mathrm{kHz} * 4 \mathrm{kHz}$ spectral width in F2 and F1 respectively, 16 Pure Shift interferogram with 64 points per block in F3, and 80 ms TOCSY mixing time. Total experimental time, 12 h 52 min . Adiabatic excitation of ${ }^{1} \mathrm{H}$-SAPPHIRE-PSYCHE and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-PSYCHE-TOCSY was performed with a 20° flip angle double saltire CHIRP pulse, 30 ms duration, 10 KHz sweep-width combined with a weak field gradient of 1.08 Gauss/cm.

Pure shift $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-HOBS-HSQC-TOSCY were recorded with 16 transients, $2 \mathrm{~K} * 256$ complex points, $5 \mathrm{kHz} * 20 \mathrm{kHz}$ spectral width in F2 and F1 respectively, and 80 ms TOCSY mixing time. Homonuclear decoupling was performed in real-time acquisition manner using HOBS scheme. We performed two $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HOBS}$-HSQC-TOSCY experiments: one, using 4 ms Rsnob selective inversion with 5.13 ppm carrier position for $\mathrm{H} 1_{\mathrm{A}}$ and $\mathrm{H} 1_{\mathrm{D}}$ homonuclear decoupling and, the second one, using 6 ms Rsnob selective inversion with 3.59 ppm carrier position for $\mathrm{H} 2{ }_{\mathrm{D}}$ homonuclear decoupling. Total experimental time, 13 h 42 min .

Pure shift ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-PS-HSQC was acquired with 16 transients, $2 \mathrm{~K} * 256$ complex points, 5 kHz * 20 kHz spectral width in F2 and F1 respectively. Homonuclear decoupling was performed in realtime acquisition manner using BIRD scheme. Total experimental time, 11 h 47 min .

Figure S1. $\mathrm{H} 1_{\mathrm{D}}$ and $\mathrm{H} 2_{\mathrm{D}}$ region of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-PSYCHE-TOCSY spectrum (sample Chi-1). The correlation between $\mathrm{H} 1_{\text {DDA }}$ resonance (5.26 ppm) and H 2 D resonance (small signal at 3.54 ppm) shows that it is related to DDA triads.

Figure S2. Modified interferogram ${ }^{1} \mathrm{H}-\mathrm{HOBS}$ pulse sequence used to measure relaxation during the selective pulse. Filled and empty rectangles indicate 90° and 180° pulses, respectively. Semiellipses indicate a 180° selective pulse. Pulses inside the brackets are repeated n times. Pulsed field gradients G_{1}, G_{2}, and G_{3} are applied along the z-axis $\left(G_{z}\right)$. The G_{1}, G_{2}, and G_{3} relative strength ratio were set according to $\mathrm{G}_{3}=\mathrm{G}_{1}-\mathrm{G}_{2}$. Phase cycling: $\delta=\mathrm{x}, \mathrm{x},-\mathrm{x},-\mathrm{x} ; \phi=\mathrm{x}, \mathrm{y}, \mathrm{x}, \mathrm{y}$; фrec $=\mathrm{x},-\mathrm{x},-\mathrm{x}$, x . Interferogram acquisition was achieved by acquiring part of the FID with duration $1 / \mathrm{SW}$ for each t 1 increment.

Figure S3. Relaxation during the selective pulse measured in sample Chi-3 using the pulse sequence described in Supporting Figure 2. The data was fitted according to $\mathbf{I}=\mathbf{I}_{\mathbf{0}}$ * $\boldsymbol{\operatorname { E x p }}\left(-\mathbf{R}_{\text {Rsnob }} *(\mathbf{2 n}+\mathbf{1})\right.$), where $2 \mathrm{n}+1=$ total number of selective pulses. Relaxation values ($\mathrm{R}_{\text {Rsnob }}$) were obtained for $\mathrm{H} 1_{\mathrm{AD}}(0.1741), \mathrm{H}_{\mathrm{AA}}(0.1184), \mathrm{H} 2_{\mathrm{DD}}(0.0855)$, and $\mathrm{H} 2_{\mathrm{DA}}(0.0924)$.

Error \% vs F_{A}

Figure S4. Error induced by the relaxation on the diads frequencies values. Experiments were recorded in interferogram manner with 8 transients, 6 kHz spectral width, and 32 Pure Shift interferograms with 64 complex point per block and a total relaxation time of 10.34 s. Selective inversion was achieved by a 20 ms Rsnob composite pulse. We performed two ${ }^{1} \mathrm{H}-\mathrm{HOBS}$ experiments with different carrier position: 4.98 ppm for $\mathrm{H} 1_{\mathrm{A}}$ and 3.59 ppm for $\mathrm{H} 2_{\mathrm{D}}$. The relaxation corrected diads frequencies values were calculated using the following formulas.
${ }^{1} \mathrm{H}$-HOBS experiment with 4.98 ppm carrier position:

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{AD}}=\left(\mathbf{F}_{\mathrm{A}} * \mathbf{I}_{\mathbf{1 A D}} * \mathbf{C}_{\mathbf{1 A D}}\right) /\left(\mathbf{I}_{\mathbf{1 A D}} * \mathbf{C}_{\mathbf{1 A D}}+\mathbf{I}_{\mathbf{1 A A}} * \mathbf{C}_{\mathbf{1 A A}}\right) \\
& \mathbf{F}_{\mathrm{AA}}=\left(\mathbf{F}_{\mathrm{A}} * \mathbf{I}_{\mathbf{1} \mathbf{A A}} * \mathbf{C}_{\mathbf{1 A A}}\right) /\left(\mathbf{I}_{\mathbf{1 A D}} * \mathbf{C}_{\mathbf{1 A D}}+\mathbf{I}_{\mathbf{1 A A}} * \mathbf{C}_{\mathbf{1 A A}}\right)
\end{aligned}
$$

${ }^{1} \mathrm{H}$-HOBS experiment with 3.59 ppm carrier position:

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{DA}}=\left(\left(\mathbf{1}-\mathbf{F}_{\mathrm{A}}\right) * \mathbf{I}_{2 \mathrm{DA}} * \mathbf{C}_{2 \mathrm{DA}}\right) /\left(\mathbf{I}_{2 \mathrm{DD}} * \mathbf{C}_{2 \mathrm{DD}}+\mathbf{I}_{2 \mathrm{DA}} * \mathbf{C}_{2 \mathrm{DA}}\right) \\
& \mathbf{F}_{\mathbf{D D}}=\left(\left(\mathbf{1}-\mathbf{F}_{\mathrm{A}}\right) * \mathbf{I}_{\mathbf{2 D D}} * \mathbf{C}_{2 \mathrm{DD}}\right) /\left(\mathbf{I}_{\mathbf{2 D D}} * \mathbf{C}_{2 \mathrm{DD}}+\mathbf{I}_{2 \mathrm{DA}} * \mathbf{C}_{2 \mathrm{DA}}\right)
\end{aligned}
$$

Spectra deconvolution were performed using Topspin software. Correction factors C were calculated by: $\mathbf{C}=\boldsymbol{e}^{-\mathbf{R}_{\text {Rsnob }}}$. The figure shows a strong dependency between the error and the F_{A} values. The error in all cases was less than 1%.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{1} \mathrm{H}-\mathrm{iHOBS}$ and ${ }^{13} \mathrm{C}$-NMR spectra sensitivity comparison acquired on Chi12 sample. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ on $12.2 \mathrm{mg} / \mathrm{mL}$ sample: $\mathrm{H} 1_{\mathrm{D}}$ (top left) and $\mathrm{H} 1_{\mathrm{A}}$ (bottom left); 1 H -iHOBS on $12.2 \mathrm{mg} / \mathrm{mL}$ sample: $\mathrm{H} 1_{\mathrm{D}}$ (top middle left) and $\mathrm{H} 1_{\mathrm{A}}$ (bottom middle left); $1 \mathrm{H}-\mathrm{iHOBS}$ on 0.45 $\mathrm{mg} / \mathrm{mL}$ sample: $\mathrm{H} 1_{\mathrm{D}}$ (top middle right) and $\mathrm{H} 1_{\mathrm{A}}$ (bottom middle right) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ on 12.2 $\mathrm{mg} / \mathrm{mL}$ sample: C 5 (top right). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{1} \mathrm{H}$-iHOBS experiments were acquired with 90° flip angle excitation, 8 scans, total relaxation time of 10.34 s and 32 increments for $\mathrm{HHOBS} .{ }^{13} \mathrm{C}$ NMR spectra was acquired using 30° flip angle, 16384 scans, 1.1 s acquisition time, and relaxation delay of 2 s .

Figure S6. Showing ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-$ SAPS-HSQC (left) plus H5-C5 (top middle), deacetylated $\mathrm{H} 2-\mathrm{C} 2$ (top right), acetylated $\mathrm{H} 1-\mathrm{C} 1$ (bottom middle) and deacetylated $\mathrm{H} 1-\mathrm{C} 1$ (bottom right) expansions.
The indirect dimension enhanced resolution $(11.8 \mathrm{~Hz})$ results in an excellent separation of deacetylated $\mathrm{H} 1-\mathrm{C} 1$ triads (bottom right). Likewise, a signal splitting belonging to deacetylated $\mathrm{H} 2-\mathrm{C} 2$ (top right), acetylated $\mathrm{H} 1-\mathrm{C} 1$ (bottom middle) diads is now observed. This separation is not observed in the regular ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ PS-HSQC, nevertheless those better resolved signals could not be assigned to any specific triad or tetrad.

SUPPORTING TABLES

Table S1. Signal to Noise (S / N) and diads frequencies measured from supporting figure 5 spectra.

	Conc (mg/mL)	S/NDD	S/N $\mathrm{Na}^{\text {d }}$	S/Nad	$\mathbf{S} / \mathbf{N}_{\text {AA }}$	$\mathrm{F}_{\text {do }}$	$\mathrm{F}_{\text {DA }}$	F_{AD}	F_{AA}	$\mathbf{P}_{\text {A }}$
${ }^{13} \mathrm{C}$-NMR	12.2	14.9	8.6	7.2	3.1	0.376	0.235	0.257	0.131	1.05
${ }^{1} \mathrm{H}$-iHOBS	12.2	759.0	611.4	394.1	267.2	0.349	0.232	0.241	0.178	0.975
	0.45	31.7	23.0	13.8	8.9	0.356	0.224	0.236	0.183	0.950
${ }^{1} \mathrm{H}$-NMR	12.2	427.0		214.8						

Table S2. Fraction of acetylation $\left(\mathrm{F}_{\mathrm{A}}\right)$, diads frequencies and pattern of acetylation $\left(\mathrm{P}_{\mathrm{A}}\right)$ of twenty chitosan samples (Chi-1-Chi-20) determined by standard ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{1} \mathrm{H}$-iHOBS, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ methodologies.

	$\begin{aligned} & { }^{1} \mathbf{H}^{\mathbf{b}} \\ & \mathrm{F}_{\mathrm{A}} \end{aligned}$	$\begin{gathered} { }^{13} \mathrm{C}^{\mathrm{c}} \\ \mathrm{~F}_{\mathrm{A}} \\ \hline \end{gathered}$	${ }^{1} \mathbf{H}^{\text {d }}$				${ }^{13} \mathrm{C}^{\text {c }}$				$\begin{aligned} & { }^{1} \mathbf{H}^{\mathrm{d}} \\ & \mathrm{P}_{\mathrm{A}} \end{aligned}$	$\begin{gathered} \hline{ }^{13} \mathrm{C}^{\mathrm{c}} \\ \mathrm{P}_{\mathrm{A}} \\ \hline \end{gathered}$
			F_{DD}	FDA	F_{AD}	$\mathrm{F}_{\text {AA }}$	F_{DD}	$\mathrm{F}_{\text {DA }}$	F_{AD}	$\mathrm{F}_{\text {AA }}$		
Chi-12	0.419	0.382	0.349	0.232	0.241	0.178	0.376	0.235	0.257	0.131	0.975	1.05
		0.369	0.350	0.234	0.239	0.177	0.429	0.202	0.227	0.142	0.975	0.935
Chi-1	0.366	0.382	0.376	0.258	0.200	0.166	0.377	0.241	0.209	0.173	0.958	0.939
		0.355	0.376	0.258	0.191	0.175	0.409	0.236	0.211	0.144	0.935	0.962
Chi-2	0.343	0.359	0.408	0.249	0.208	0.135	0.426	0.215	0.201	0.158	0.988	0.896
		0.344	0.395	0.262	0.204	0.139	0.417	0.239	0.196	0.149	0.998	0.936
Chi-13	0.338	0.367	0.451	0.211	0.191	0.148	0.430	0.203	0.208	0.159	0.884	0.887
		0.321	0.445	0.217	0.185	0.153	0.528	0.152	0.160	0.160	0.879	0.721
Chi-3	0.334	0.320	0.431	0.234	0.194	0.141	0.458	0.222	0.200	0.121	0.935	0.950
		0.352	0.432	0.234	0.186	0.149	0.459	0.190	0.231	0.121	0.913	0.950
Chi-4	0.309	0.2	0.464	0.227	0.177	0.1	0.537	0.201	0.144	0.119	0.909	0.834
		0.281	0.459	0.233	0.174	0.134	0.503	0.216	0.159	0.122	0.910	0.877
Chi-5	0.282	0.313	0.503	0.215	0.167	0.115	0.490	0.197	0.185	0.128	0.900	0.880
		0.33	0.493	0.225	0.168	0.115	0.512	0.151	0.184	0.153	0.916	0.769
Chi-6	0.276	0.308	0.522	0.203	0.1	0.1	0.484	0.208	0.192	0.116	0.870	0.926
		0.292	0.517	0.207	0.158	0.118	0.516	0.192	0.161	0.131	0.868	0.828
Chi-7	0.265	0.	0.	0.	0.	0.	0.	0.164	0.179	0.143	0.877	0.796
		0.243	0.526	0.209	0.152	0.113	0.576	0.181	0.144	0.099	0.871	0.842
Chi-8	0.257	0.2	0.547	0.196	0.154	0.103	0.575	0.167	0.135	0.123	0.870	0.758
		0.242	0.531	0.212	0.154	0.103	0.561	0.197	0.130	0.111	0.897	0.822
Chi-9	0.168	0.	0.68	0.147	0.115	0.053	0.672	0.165	0.116	0.046	0.871	0.925
		0.131	0.654	0.177	0.121	0.048	0.718	0.151	0.087	0.044	0.944	0.872
Chi-14	0.146	0.109	0.	0	0.	0.046	0.793	0.099	0.099	0.010	0.849	1.017
		0.145	0.697	0.158	0.103	0.043	0.716	0.139	0.145	0.000	0.910	1.165
Chi-15	0.132	0.	0.	0.115	0.089	0.043	0.729	0.098	0.133	0.040	0.821	0.879
		0.202	0.730	0.138	0.093	0.039	0.677	0.120	0.168	0.035	0.884	0.981
Chi-16	0.115	0.	0.	0.	0.077	0.038	0.715	0.107	0.104	0.075	0.817	0.714
		0.247	0.751	0.133	0.080	0.035	0.640	0.112	0.091	0.156	0.876	0.530
Chi-17	0.103	0.	0.8	0.082	0.0	0.029	0.783	0.102	0.095	0.020	0.816	0.943
		0.130	0.800	0.097	0.075	0.028	0.736	0.133	0.070	0.060	0.851	0.751
Chi-18	0.078	0.	0.853	0.069	0.054	0.024	0.918	0.032	0.034	0.015	0.787	0.718
		0.109	0.837	0.085	0.054	0.023	0.791	0.101	0.078	0.031	0.826	0.845
Chi-19	0.067	0.082	0.876	0.058	0.050	0.016	0.882	0.036	0.074	0.007	0.824	0.941
		0.135	0.846	0.087	0.051	0.016	0.783	0.082	0.080	0.055	0.887	0.689
Chi-20	0.062	0.123	0.895	0.043	0.046	0.016	0.792	0.085	0.096	0.027	0.785	0.875
		0.070	0.865	0.073	0.045	0.017	0.875	0.055	0.045	0.025	0.837	0.717
Chi-10	0.046	0.000	0.924	0.030	0.040	0.006	0.999	0.001	0.000	0.000	0.890	0.554
		$n d^{\text {e }}$	0.856	0.099	0.034	0.011	$n d^{\text {e }}$	0.930	$n d^{\text {e }}$			
Chi-11	0.001	0.000	0.998	0.000	0.001	0.000	1.000	0.000	0.000	0.000	1.001	1.000
		nd^{e}	0.999	0.000	0.001	0.000	$\mathrm{nd}^{\text {e }}$	nd ${ }^{\text {e }}$	nd^{e}	nd ${ }^{\text {e }}$	1.001	nd ${ }^{\text {e }}$

${ }^{\text {a }}$ Chi sample data was deconvoluted using Topspin software (first row on each) and Mestrenova (second row on each). ${ }^{\mathrm{b}} \mathrm{F}_{\mathrm{A}}$ values were calculated using classical ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. ${ }^{14,15 \mathrm{c}}$ Inverse gate ${ }^{13} \mathrm{C}$-NMR spectra ${ }^{10}$ were used for F_{A} and P_{A} determinations. ${ }^{\mathrm{d} 1} \mathrm{HOBS}$ methodology implemented in this study was used to calculate diads fractions and P_{A} values. ${ }^{\mathrm{e}}$ nd cannot be determined.

Table S3. Fraction of acetylation and diads frequencies of chitosan samples (Chi3, Chi-9, Chi12 and Chi-15) determined by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-SAPS-HSQC, ${ }^{1} \mathrm{H}$-iHOBS, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ methodologies.

	${ }^{1} \mathbf{H}$	SAPS-HSQC				${ }^{1} \mathrm{H}$-iHOBS				${ }^{13} \mathrm{C}$			
	F_{A}	F_{DD}	F_{DA}	F_{AD}	$\mathrm{F}_{\text {AA }}$	F_{DD}	F_{DA}	$\mathrm{F}_{\text {AD }}$	$\mathrm{F}_{\text {AA }}$	F_{DD}	F_{DA}	F_{AD}	F_{AA}
Chi-12	0.419	$\begin{aligned} & 0.385^{\mathrm{a}} \\ & 0.361^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.211^{\mathrm{a}} \\ & 0.219^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.261^{\mathrm{a}} \\ & 0.245^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.143^{\mathrm{a}} \\ & 0.175^{\mathrm{b}} \end{aligned}$	0.349	0.232	0.241	0.178	0.376	0.235	0.257	0.131
Chi-3	0.334	$\begin{aligned} & 0.526^{a} \\ & 0.493^{b} \end{aligned}$	$\begin{aligned} & 0.172^{\mathrm{a}} \\ & 0.246^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.216^{\mathrm{a}} \\ & 0.188^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.086^{\mathrm{a}} \\ & 0.073^{\mathrm{b}} \end{aligned}$	0.431	0.234	0.194	0.141	0.458	0.222	0.200	0.121
Chi-9	0.168	$\begin{aligned} & 0.717^{\mathrm{a}} \\ & 0.676^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.112^{\mathrm{a}} \\ & 0.132^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.107^{\mathrm{a}} \\ & 0.122^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.064^{\mathrm{a}} \\ & 0.070^{\mathrm{b}} \end{aligned}$	0.685	0.147	0.115	0.053	0.672	0.165	0.116	0.046
Chi-15	0.132	$\begin{aligned} & 0.796^{\mathrm{a}} \\ & 0.770^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.071^{\mathrm{a}} \\ & 0.099^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.081^{\mathrm{a}} \\ & 0.079^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 0.030^{\mathrm{a}} \\ & 0.052^{\mathrm{b}} \end{aligned}$	0.754	0.115	0.089	0.043	0.729	0.098	0.133	0.040

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-SAPS-HSQC quantification is obtained by direct integration of the signal $\mathrm{H} 5-\mathrm{C} 5$ or by combining integrations from acetylated $\mathrm{H} 1-\mathrm{C} 1$ and deacetylated $\mathrm{H} 2-\mathrm{C} 2$ signals.
${ }^{\text {a }}$ Diads frequencies determined ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-SAPS-HSQC by integrating H5-C5 signals:

$$
\begin{aligned}
& F_{D A}=I_{5 D A} /\left(\mathbf{I}_{5 D A}+\mathbf{I}_{5 A D}+\mathbf{I}_{5 D D}+\mathbf{I}_{5 A A}\right) \\
& \mathbf{F}_{\mathrm{AD}}=\mathbf{I}_{5 \mathrm{AD}} /\left(\mathbf{I}_{5 D A}+\mathbf{I}_{5 A D}+\mathbf{I}_{5 D D}+\mathbf{I}_{5 A A}\right) \\
& \mathbf{F}_{\mathbf{D D}}=\mathbf{I}_{\mathbf{5 D D}} /\left(\mathbf{I}_{\mathbf{5 D A}}+\mathbf{I}_{\mathbf{5 A D}}+\mathbf{I}_{\mathbf{5 D D}}+\mathbf{I}_{\mathbf{5 A A}}\right) \\
& F_{A A}=I_{5 A A} /\left(I_{5 D A}+I_{5 A D}+I_{5 D D}+I_{5 A A}\right)
\end{aligned}
$$

${ }^{\mathrm{b}}$ Diads frequencies determined ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-SAPS-HSQC by integrating deacetylated $\mathrm{H} 2-\mathrm{C} 2$ and acetylated H1-C1 signals:

$$
\begin{gathered}
\mathbf{F}_{\mathrm{DA}}=\left(\left(\mathbf{1}-\mathbf{F}_{\mathrm{A}}\right) * \mathbf{I}_{\mathbf{2 D A}}\right) /\left(\mathbf{I}_{\mathbf{2 D D}}+\mathbf{I}_{\mathbf{2 D A}}\right) \\
\mathbf{F}_{\mathrm{DD}}=\left(\left(\mathbf{1}-\mathbf{F}_{\mathrm{A}}\right) * \mathbf{I}_{\mathbf{2 D D}}\right) /\left(\mathbf{I}_{\mathbf{2 D D}}+\mathbf{I}_{\mathbf{2 D A}}\right) \\
\mathbf{F}_{\mathrm{AD}}=\left(\mathbf{F}_{\mathbf{A}} * \mathbf{I}_{\mathbf{1 A D}}\right) /\left(\mathbf{I}_{\mathbf{1 A D}}+\mathbf{I}_{\mathbf{1 A A}}\right) \\
\mathbf{F}_{\mathrm{AA}}=\left(\mathbf{F}_{\mathbf{A}} * \mathbf{I}_{\mathbf{1} \mathbf{A A}}\right) /\left(\mathbf{I}_{\mathbf{1 A D}}+\mathbf{I}_{\mathbf{1} \mathbf{A A}}\right)
\end{gathered}
$$

```
;Selective pulse Relaxation reset_HOBS_1d-R
;avance-version (14/08/29)
;pseudo 2D sequence
;band selective homodecoupling using a HOBS element
;
;
;$CLASS=HighRes
;$DIM=2D
;$TYPE=
;$SUBTYPE=
;$COMMENT=
#include <Avance.incl>
#include <Grad.incl>
#include < Delay.incl>
"d11=30m"
"d12=20u"
"in0=dw*131"
"d0=3u"
"p2=2*p1"
"DELTA2=131*2*dw"
```

```
"129=2*131*td1"
1 ze
2 d11
3 d12
    d1 pl1:f1
    50u UNBLKGRAD
    (p1 ph3):f1
    d0
    p16:gp1*0.5
    d16
    (p2 ph5):f1
    p16:gp1*-0.5
    d16
    DELTA3
    (p47:sp34 ph2):f1
    4(p47:sp34 ph12):fl
    (p47:sp34 ph2):f1
    lo to 4 times 111
```

p16:gp1*-1.0
d16
d0

4u BLKGRAD
$\mathrm{go}=2 \mathrm{ph} 31$
d11 mc \#0 to 2
F1QF(caldel (d0, +in0))

DELTA2

exit
ph2=0 1
ph3=0 022
ph4 $=0$
ph5 $=0$
ph12 $=23$
ph31=0 220
;pl1 : fl channel - power level for pulse (default)
;sp30: fl channel - shaped pulse 180 degree (Bip720,50,20.1)
;sp34: f1 channel - shaped pulse 180 degree for Zangger-Sterk element
;p1: f1 channel-90 degree high power pulse
;p16: homospoil/gradient pulse
;p44: fl channel-180 degree shaped pulse for refocussing
;d0 : incremented delay (2D)
;d1 : relaxation delay; $1-5$ * T1
;d11: delay for disk I/O
;d12: delay for power switching
[30 msec]
;d16: delay for homospoil/gradient recovery
;111: n 180 degree shaped pulse
;129: total number of points in reconstructed FID
;130: number of complex points at the beginning not to be included
; in reconstruction
;131: number of complex points along the acquisition dimension per block
; block length about 8 to 10 ms
;in0: = dw*131
;ns: 1 * n , total number of scans: NS * TD0
;ds: 4
;FnMODE: QF
;for z -only gradients:
;gpz0: 2\%
;gpz1: 19\%
;use gradient files:
;gpnam0: RECT. 1
;gpnam1: SMSQ10.100
;use AU-program proc_reset to process data

